MATH4010 Functional Analysis (2020-21): Homework 5. Deadline: 19 Nov 2020

Important Notice:

 \clubsuit The answer paper must be submitted before the deadline.

 \blacklozenge The answer paper MUST BE sent to the CU Blackboard. Please refer to the course web for details.

 \bigstar Each answer paper must include your name and student ID.

- 1. Let (x_n) and (y_n) be the sequences in a Hilbert space H. Suppose that the limits $\lim ||x_n||, \lim ||y_n||$ and $\lim ||\frac{x_n+y_n}{2}||$ exist and are equal. Show that if (x_n) is convergent, then so is (y_n) .
- 2. Fix an element $z \in H$. Define a linear functional φ on H by $\varphi(x) = (x, z)$.
 - (i) Show that $\|\varphi\| = \|z\|$.
 - (ii) Let $w \in H$. Find $dist(w, \ker \varphi)$, the distance between the element w and $\ker \varphi$. (the answer is in terms of w and z.)
 - (iii) Let $H = L^2(\mathbb{T})$ and φ be the functional on H given by $\varphi(f) := \int_{\mathbb{T}} f(z) dz$ for $f \in H$. Let $g \in H$. Find the element $h \in \ker \varphi$ such that $||g - h|| = dist(g, \ker \varphi)$.

*** End ***